## EMC and New Technologies in Automotive Systems

Mark Steffka

Email: msteffka@umd.umich.edu

University of Michigan – Dearborn

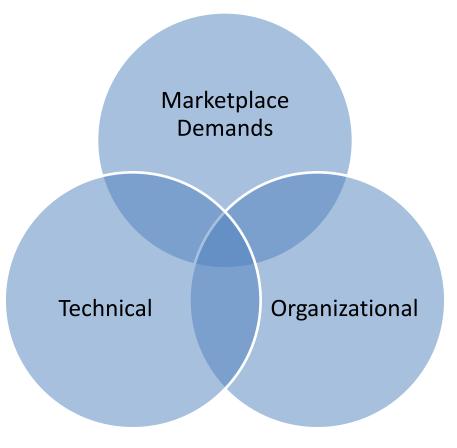
**Electrical and Computer Engineering** 

Department



## Automotive Systems "Past and Present"

 Today's vehicles contain three centuries of technology...19<sup>th</sup> century internal combustion engines...combined with 20<sup>th</sup> century electrical systems...and 21<sup>st</sup> century electronics....

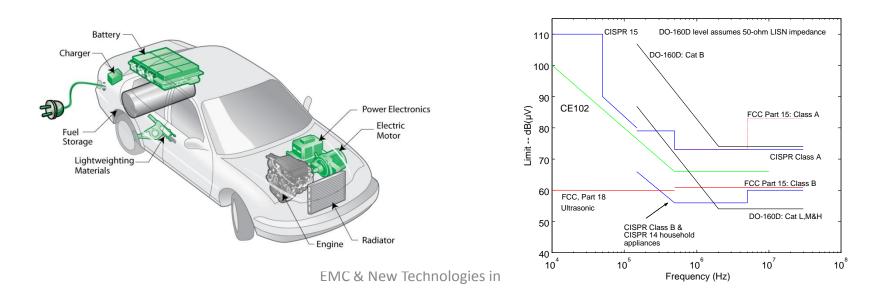



Automotive EMC...from Spark to Satellite...



#### Automotive EMC Goals

- Highest priority is to exceed expectations of the customer.
- Meet challenges of technology content in vehicles.
- Develop organization that supports EMC.




#### Automotive EMC Is Changing

- Global shift towards new propulsion systems is changing the content of vehicles.
- These new systems will need appropriate EMC methods, standards, and utilization of EMC approaches from other specialties.
- Many of these systems will utilize high voltage components and have safety aspects that may make automotive EMC more difficult and safety takes priority!

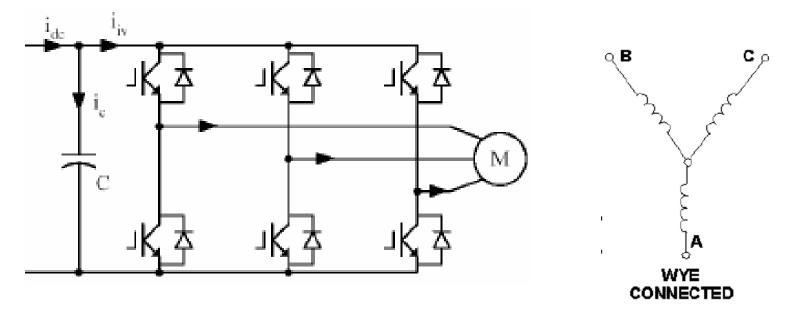
### New Requirements May Apply?

- Continuing vehicle evolution may result in new requirements / regulations.
- "Plug In" Vehicle classified as a household appliance for EMC? (Vehicle Figure Is Courtesy of Argonne National Laboratory)



#### Automotive Systems of the Future

|              | Low Voltage<br>Systems | Low Power<br>PWM Signals | High Voltage<br>Drive Systems | High Power<br>PWM Signals |
|--------------|------------------------|--------------------------|-------------------------------|---------------------------|
| Conventional | x                      | х                        |                               |                           |
| Hybrid       | x                      | x                        | x                             | Х                         |
| Electric     | x                      | x                        | x                             | X                         |
| Fuel Cell    | х                      | х                        | x                             | X                         |

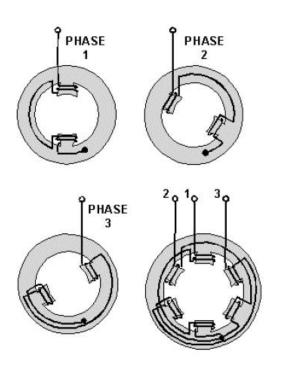

- Incorporation of high power electric drive systems as well as today's conventional ones.
- EMC techniques from other industries will become important in automotive EMC.

#### EMC Aspects of Variable Speed Electric Drives

## Why Use Electric Drives?

- Advances in power electronics as well as motor design and manufacturing have made electric drives very attractive.
- The benefits of electric drives include high efficiency with lower mass as a result of implementation of adjustable/variable speed or frequency drives (ASD/VSD/VFD).
- Provide energy efficiency and flexibility over existing "conventional" drive systems.

## Schematic of Three Phase Controller and Motor Circuit




 IGBT's generate three-phase motor drive current which is supplied to "Wye" stator windings.

#### **Electric Drive Control Systems**

- Control systems for electric drives typically consist of active switching of the primary current for the motor (similar to basic switching power supply).
- Output voltage is determined by switching speed and "on" duration of the drive transistor's).
- Multiple phases can be obtained by utilizing multiple driver transistors with appropriate timing.

## Steps in the Construction of A Drive Motor



- A stator is produced that contains a number of "poles" that are used to hold the windings.
- Application of drive current for each phase generates magnetic field.

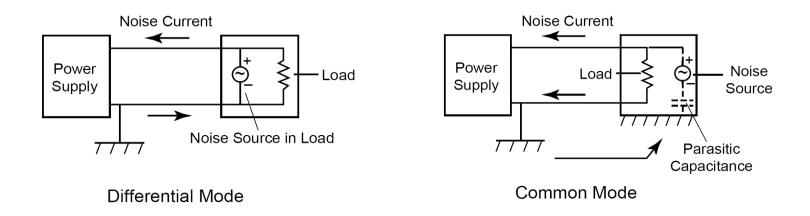
#### **Actual Stator Construction**

- Figure at right shows a typical stator from a variable speed drive motor.
- Significant portion of the stator (and it's mass) is due to the large number of windings required.



#### Permanent Magnet Rotor Construction




- Rotor contains high-strength permanent magnets arranged around the perimeter.
- "Movement" of field in stator causes magnets to try to track the field resulting in rotation.

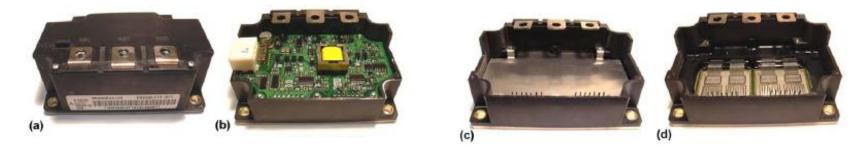
## Typical Electric Drive Motor Specifications



- The motor shown at left has an output capability at 1500 RPM of:
  - 50 kW (approximately67 hp)
  - 400 NM
     (approximately 300 ftpounds).

## Electric Drive EMC Issue: Conducted Emissions




- Differential Mode Current Emissions can be due to the high voltage / current of the "intended" circuit.
- Common Mode Current Current can flow in an "untended" path due to capacitive coupling.

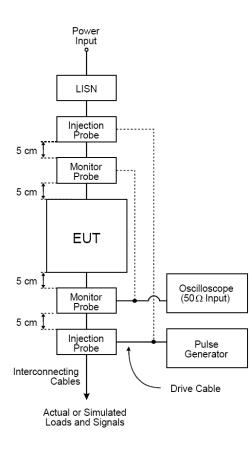
#### Operation of Electro-Mechanical Devices and EMC

# Balancing EMC and Performance Requirements

- Important to understand the speed of operation of electro-mechanical devices compared to fast "slew rate" power signals from power drive devices such as Insulated Gate Bipolar Transistors (IGBT).
- The switching operation results in low power dissipation (in the drive devices) along with:
  - Semiconductor operation at an order of magnitude faster than the response time of electromechanical devices.
  - Causing radiated/conducted emission issues.

## Examples of Electric Drive Controller




- Figures (a) and (b) show the control electronics.
- Figure (c) shows an EMC shield over the IGBT's to prevent noise from affecting low-level signals.
- Figure (d) shows the driver IGBT's.

Adaptation of "Common Approaches" From Other Industries

## Why Wiring is Important to Automotive EMC

- Early systems (and vehicles) had few components to be connected - recent systems have increased wiring complexity, similar to many non-automotive systems.
- Many automotive engineers consider wiring "just a piece of wire" and the chassis is "GROUND" (this is not true – impedance exists).
- Wiring will still be used for many systems in the future and we need to understand relevant physical parameters.

## Bulk Current Injection (BCI) Test Method



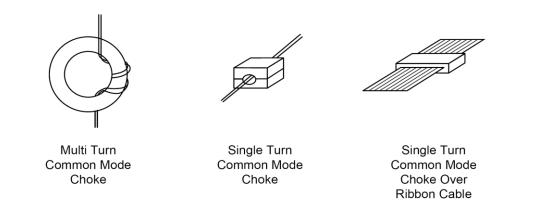
- Consists of injection of RF or pulse energy on wiring harness.
- Typical BCI testing is to 400 MHz.
- General rule: 1.5 mA of RF current induced on a cable is equivalent to ½ wavelength cable in a field strength of 1 V/M.

## Shielding Methods For Radiated or Conducted Noise

- May be used to decrease radiated noise or to increase immunity to external E/M fields.
- Can be used as a diagnostic step to determine a specific sensitive component or wire.
- Sometimes incorporated into a design as an integral method to meet EMC requirements.

## Electric and Magnetic Shielding — The Quick Way!

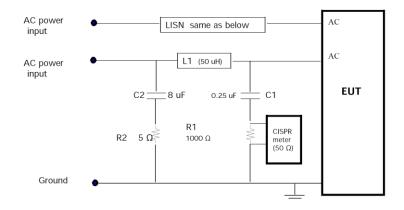





- Common household aluminum foil can be a very effective shield for electric fields in a diagnostic process.
- Use of clamp-on ferrites can reduce conducted noise due to magnetic fields.

#### **CE Diagnostic Process**

- Important to understand that RF current on wiring can cause CE (which may then result in RE) issues.
- If testing shows that CE needs to be reduced, it may be possible to add an inductance (sometimes called a "choke") to the wiring to reduce the magnitude of this current.


## **Typical CE Chokes**



- Consists of toroids, cylinders, or rectangles made from ferrite material. installed without cutting into wiring
- There are many examples of chokes on power supply cabling and computer video cables used to pass EMC requirements.

### **CE Testing With LISN**

- At right is a LISN and it's connection to an equipment under test (EUT).
- The purposes of a LISN are only to have a constant impedance and connection for CE measurements.



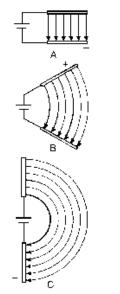
(neglecting the effects of C1, C2 and R1)

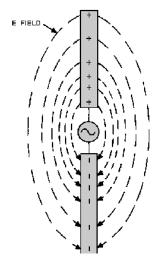
| Frequency | Equivalent Impedance<br>(ohms) |  |  |
|-----------|--------------------------------|--|--|
| 10 kHz    | 5.36                           |  |  |
| 20 kHz    | 7.25                           |  |  |
| 40 kHz    | 11.99                          |  |  |
| 50 kHz    | 14.41                          |  |  |
| 100 kHz   | 25.11                          |  |  |
| 200 kHz   | 37.74                          |  |  |
| 500 kHz   | 47.21                          |  |  |
| 1.0 MHz   | 49.26                          |  |  |
| 2.0 MHz   | 49.80                          |  |  |
| 5.0 MHz   | 49.98                          |  |  |
| 8.0 MHz   | 50.00                          |  |  |
| 30.0 MHz  | 50.00                          |  |  |

### LISN Confusion!

- Sometimes it is stated that the intent of the LISN is to duplicate the wiring harness for the EUT. This is not true!
- There is empirical evidence that systems have wire harness inductance of:

– Large systems = 50 uH (such as aircraft)


– Small systems = 5 uH (such as automotive)


• LISN's should be selected based on the frequencies of the measurements required.

Wireless System Operational Parameters and Effect of Automotive Systems

#### **Antenna Basics**

- Most wireless system antennas are designed to utilize the *electric field component* of E/M wave for communication.
- This type of antenna can be represented as an "open" capacitor.

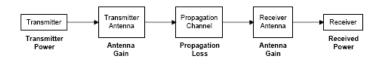




## Electrical Model of Antenna Parameters

- An antenna can be represented just like any other type of electrical component.
- Can be expressed as a complex impedance load:

$$Z_{ant} = R_r + jX \text{ (ohms)}$$


Where:

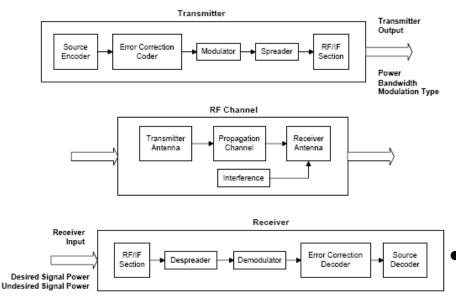
R<sub>r</sub> is the "Radiation Resistance" (a derived value describing how effective the antenna is in transferring power to/from the medium)

jX is the value of the sum of the reactance (due to series inductance and capacitance). When "jX = 0" the antenna is "resonant".

## Communication "Link Budget"

• The "link budget" determines the received-signal power for a line-of-sight communication link:




#### Where:

- Pt = Signal power at transmitter output, in dBm
- Gt = Transmitter antenna gain, in dBi
- L = Propagation loss, dB
- Gr = Receiver antenna gain, in dBi
- Pr = Signal power at the receiver input, in dBm

## Benefit of Digital Modulation Methods

- Digital systems can provide robustness to EMC issues in the communication link by error detection and correction methods as well a through bit-error-rate (BER) parameters.
- If a higher BER can be accommodated, this may allow minimal link budget values.
- Goal is an acceptable balance of transmitter / receiver specifications (such as sensitivity, signal to noise ratio), path loss, and BER.

## Automotive System Impact Upon "Link Budget"



- Link budget

   calculations can be
   significantly affected
   by interference
   sources from vehicle
   systems.
- Can affect both the "channel" and the receiver performance.

## Wireless System EMC -Summary

- The proliferation of wireless systems in a vehicle environment can result (ironically) in the demand for more immune/robust systems.
- System compatibility can be evaluated by understanding the basics of EMC as applied to other technologies.
- By understanding how antennas can be represented and wireless systems function, the performance of wireless systems in the presence of automotive systems can be determined.

Development of "Simple" EMC Test Methods / Approaches That ANY Engineer Can Use

# Test Methods for the Non-EMC Engineer

- EMC analysis work CAN be conducted by the "non-EMC" engineer.
- Approaches involve simple test methods that are designed to address common EMC issues.
- Allows engineers insight into their design's overall EMC capability – *before formal EMC testing takes* place.

# Test Equipment for EMC Work (for everyone!)

- EMC initial diagnosis and analysis can be accomplished by using common items found in an electronics lab.
- Goal is to perform basic tests to identify the "Source-Path-Receiver" present in *every* EMC problem.

## RE and RI "Quick Tests"

- Configure component/system into operational mode and use a portable radio to identify emissions.
  - AM/FM radio receivers AM setting useful to trace BB noise - FM useful to trace NB noise.
  - Clamp ferrites on harnesses to eliminate effect of conducted energy.
- For immunity Handheld transmitters can provide local high magnitude fields to identify potential issues.

#### An RE and CE Detector!



- Acts as a "receiver" in the "Source-Path-Receiver" model.
- Best ones for EMC work are the lowest selectivity analog receivers.
- Can be used to detect both radiated and conducted noise.

## Radiated Immunity – The "Handy Way"

 Use "license free" handheld receiver/transmitters at close distances to produce field strengths that duplicate significantly higher fields from other sources.



#### **Pocket Sized Tools**



- An electrical oriented "multi-tool" can be used to cut wire and remove paint/corrosion.
- Use of a tape measure can help identify wires that act as "undesired antennas" due to their length > 10 % of λ.

## My Personal Favorite – The "MFJ-269"



- Designed for antenna engineering, this device generates a RF signal from 1.7- 174 MHz.
- Measures (at user selected frequencies) complex impedance (Z), capacitance (C), and inductance (L) of wires/components.

#### Summary

- Automotive EMC has been continually evolving to meet the challenges that new technology brings.
- The automotive industry in undergoing a complete "re-invention" of itself to meet demands of today's world.
- Understanding of the basics of these new technologies and will enable Automotive EMC to meet these challenges!