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OUTLINE

o Evolution of Waveform Relaxation (WR)

¢ WR In the Circuit Domain

¢ WR for Transmission Lines

o WR for Electromagnetic Solvers
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SYSTEMS TO BE SOLVED

Time Domain Solution for Large Systems
o May contain non-linear parts
o Heterogeneous: VLSI circuit
e Problems with many transmission lines

« Homogeneous: EM circuit PEEC models

» Sparse MNA System solution Time O(n'>)
Cx(t) + Gx(t) = Bu;
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BEGINNING OF WAVEFORM
RELAXATION

Time Domain Solution for Large Systems
o Logic circuits are almost One-Way
o Forward coupling from left to right
o Miller capacitances introduce back coupling!
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WAVEFORM RELAXATION SOLUTION

Example for Weak One-Way Coupled Subsystems
e Solve SSyl for window In time, Solve SSy2 ...

[ %: 8 \r\\
= 1 > 9

Cp[x1(t),exo(t)|X1(t) + G1[x1(t), e X2(1)] = Bu;
Co[X1(t),Xo(t)]Xo(t) + Go[x1(1),X2(t)] =0
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BEGINNING OF WAVEFORM
TECHNIQUES

Start was Work on One-Way Systems and WR

o 1980 Work on one-way systems (Paper: Ruehli,
Sangiovanni, Rabbat)

o 1981 first ideas on WR, Lelarasmee, Ruehli,
Sangiovanni-Vincentelll

e 1982 Trans. on CAD paper on WR
o First application goal: large logic circuits
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OUTLINE OF GENERAL WR SOLUTION

Assume System Partitioned into Subsystems (SSy)
o Partition circuit into SSy
o Most logic SSy are One-Way forward

Other Fundamental Steps in WR Approach
o Ordering of SSy (make labels)
o Scheduling of SSy for solver
o Solve an SSy for window In time

o Store waveform for time window segment
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PARTITIONING FOR CIRCUITS

Circuits are Heterogeneous Systems!
o First, exploit hierarchy from top down
o Short feedback loops are in one SSy
o Weak coupling allows cutting at circuit inputs
o Break circuits depending on strong coupling
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PARTITIONING STRATEGY

Non-uniform Structure of Circuits

o Circuit level partition at detail level

o Assemble SSy bottom up branch by branch

o Assemble nodes into strongly coupled SSy
R=1

SACMI RS

Assemble SSy according to coupling R> Only EigenV=0.19;
R, and Rg EigenV=0.25

R, and R; and Rg EigenV= 0.37
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RAPID CONVERGENCE FOR RC
CIRCUITS

CONVERGENCE IN SMALL TIME WINDOW
o Analytic Expression For Convergence
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Rapid Convergence For Window T : [k < 2eT
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PARTITIONING DIFFICULT FOR SOME
CKTs

High Pass Connection, Strong Coupling

e Short circuit between nodes 1 and 2
o Needs more advanced partitioning approach

A0 +avi? (1) = (1) + () /G
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SSy ORDERING

Time Domain Solution for Large Systems
o Start at iInputs (sources)
o Logic circuits: levelize the graph
o SSy labeling according to graph results
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SCHEDULING OF SSy

Scheduling After Ordering

o Assignment of SSy sequence
o Scheduling based on ordering

o However, can be different from ordering
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SCHEDULING OF SSy SOLVER

Basic Scheduling of SSy
o Simple chain example
o Follow ordering = basic schedule

o Visit all SSy until all voltages, currents
converged

Order { 1.,2,3,4,5,6,7,8,.

Basic Schedule

1 2 3 49 5 6 7 8 9
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ENHANCED SCHEDULING

¢ Theorem Scheduling

o Assume that the SSy have directionality (logic
ckts with € feedback signal)

o The error of cutting the feedback at SSy k results
in a back direction error O(e(N-K))

e The error propagating in the forward direction is

O(8> EPSILON SCHEDULE
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SSy SOLVE STEP

Given:
o Partitioning done: We have SSys
o Ordering done, Static schedule known
o Solve SSys according to static schedule

Use of Updated Waveforms?

o Gauss-Jacobi: Update at end of solving all SSy,
Converges slower

o Gauss-Seidel: New waveforms each SSy solve

July, 2010 Slide 16 of47



SSy LATENCY (DORMANCY)

Avoid Solve Compute Time for Latent SSy
o A Subsystem is Latent if

o All external waveforms xg do not change

X —x2" V|| < ea+ermaxixe’ Y|

Waveform)

Time
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WAVEFORM EXCHANGE, STORAGE

Example: Waveforms for two SSy
o Solve SSy 1 using waveforms from SSy 2

o« WEFs are divided into time windows, Store by
windows

V,i(t)/\_U_
: t>
v,i(t) SSy
SSy O =
2
- O
1 V,i(t)
v,i(t)T\‘:J
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OVER AND UNDER WAVEFORM

OVER (UNDER) RELAXATION FACTORO0<[ <2
o Scale the update by 3

e Under-relaxation

e Over-relaxation

o Approximate [3(t)

) = falyi )00 (1))

X (1) = Be)yy ™ ) + (1 - B (1)
y;kJrl) (t) _ f2 [X(1k+1) (t)7ygk+1) (t)]

% (1) = Bty () + (1 - B)Y (1)
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PARALLEL PROCESSING FOR WR

Suitabllity for Parallel Processing
o Used for large circuits with many SSys

o Need algorithms which keep most processors
busy

o Would like to have number of processors smaller
than number of SSy

Experience with Parallel Circuit Solver

o Faster if use more aggressive partitioning
allowing for non-uniform iterations

o Best approach for parallel (Spice) circuit solver?
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COMPARE WR TO SPICE

SPICE- Time Point By Point Computations
o Computations are localized in single matrix
e Short compute times only

o Cannot tolerate delays(latency) in processor
communication, less suitable for parallel

WR- Compute all Point for Time Window

o Put a small Spice on each processor as solver

« WR, processor exchange of waveforms rather
than point data only

o Can tolerate larger communication latency
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PARALLEL WR FOR LARGE CIRCUITS

o Circuits with up to 186k transistors
e 256 processor WR circuit solver speedup

Speed
Up
*
200 |-
* *
*
* *
100 *
*
* *
*
% % %
10" 10° 10°

Number of Transistors
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SUMMARY OF VLSI CIRCUIT PART

WR For Pure Circuit Problems
o Many interesting circuit specific algorithms
o Good enhancement of WR performance
o High efficiency for parallel processing

State Of The Art
o Cheap parallel processors are widely available
o« Makes WR more useful
o Still much work needs to be done

July, 2010 Slide 23 of47



APPLICATION TO COMBINED
ELMAG./CIRCUIT PROBLEMS

EM/Ckt Problems

o General: EM and Ckt interactions challenging

e 3D EM solutions much different from Ckt
« Full wave solution adds challenges
e Nonlinear combined solvers are difficult

Observations About Partitioning
o« EM problems can be systematically partitioned
e Homogeneous structures with fixed partitioning

o Partitioning and convergence can be controlled
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PARTITIONING FOR TLs

Transverse Partitioning for Multi-Lines
o Modeling with many TLs is very time expensive
o Use transverse WR partitioning for problem

Example 4

IBM Frequency Dependent Lines
CPU Cost

July, 2010 Slide 25 of47



PARTITIONING FOR TLs

Excessive Spice Compute Time
o Modeling with many TLs is very time expensive
o Without WR compute time

W

100

N

(number of lines)
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PARTITIONING FOR TL RESULTS

Excessive Spice Compute Time
o Modeling for multi TLs Is very time expensive
o Compute time with transverse WR is linear!

23
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Linear |
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number of lines
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PEEC for 3D WR-EM SOLUTION

PEEC - Transforms EM Problem to Circuit Domain

Transient (and frequency) domain EM solutions

PEEC ckt. models: Consists of capacitances,
Inductances, resistances, voltage, current
sources

Partitioning at coupled elements
Using modified nodal analysis (MNA) formulation

PEEC gets low frequency and dc solution
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Basic Derivation of PEEC Model

Equation for Total Electric Field
o KVL: v:fE-dI

_ aJ r td dv

+ G(r r)q(rs,tq)dw (1)
€0

PEEC Circuit Model Element Computation
e KVL: Voltage=R | +sLpl +Q/C

e RHS Term 1: Resistance
e RHS Term 2: Partial Inductance
e RHS Term 3: Coefficient of Potential
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(Lp,P,R,T)PEEC Equivalent Circuit Model

PEEC Equivalent Circuits For Two Basic Cells
e Example: 3 Node Discretization of “Metal Stick”
o Path along metal conductor is strongly coupled
o Coupled Partial Inductances and Capacitances

1 Lp,, Ry, ‘P22 R,
L, Vv Ir> 3
V, 2 V;
'C1 Ic2 |C3
L 1 | L 1 - L 1 .
— m Ow 4 -1 p22 <>¢'2 =1 P33 <>¢'3
? | 4 | *
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Partitioning Into SSy

4|
oo
Y

EM Interactions between SSys
o« PEEC mutual coupling between all EM SSy
o Challenge is coupled branches SSy to SSy
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OUTLINE OF EM SSy PARTITIONING

EM Geometry Partitioning into SSg
o Circuit topology is same for all PEEC cells
o Partial inductance coupling decreases with d
o Capacitive coupling decreases with d
o SSy formed based on weak coupling

PEEC Model Direct Coupling
o Break at less coupled parts
o Need to break resistive conduction path
o Galvanic-ally isolated units are easy to decouple
o Trade-off between SSy size and no. iterations
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PRE-ESTIMATION OF COUPLING
STRENGTH

Coupling factors checks for partitioning

e Do we have to know the circuit details to
estimate couplings?

o« Good news. WR coupling may be large
compared to EM coupling!

e WR Coupling factors y < 0.251s small

o Each iteration error will be reduced by factor 4
o Convergence in 3 to 5 iterations

« EM Coupling 103 may still be large!

o Cannot neglect such EM couplings
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ESTIMATE OF COUPLING STRENGTH

Coupling factors checks for partitioning
» Inductive coupling: y= Lp%,/(Lp11Lp22)
o Can also use distance-size related criteria
o Capacitive couplings, use similar approximation
e WR couplings is weak if y< 0.1
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Inductive SSYWR Decoupling
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Capacitive SSYWR Decoupling
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ASSEMBLING THE SSyFROM
ELEMENTS

<&

=00,

L {F — X~

: SSy

Test Coupling all Elements Between SSyElements

o dcpaths are directly coupled

SSy
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SOLUTION OF PARTITIONED SSys

o Neutral Delay Differential Equations (NDDE) in
Modified Nodal Analysis (MNA) form

CoX+ G X+ 3 G XU =T) + 3 CiX(t—T) = 3 B Uit —Ti) =
—2iChiX(t=T) -3 g u(t—T)+ 3 BY u(t—T))

o Solve the subsystems SSyin usual Spice form

o Each processor has its own Spice Circuit solver

o Always use latest waveform results

o Each subsystem SSyhas its own time-step

o Need Multi-Rate interpolation among the
coupled waveforms
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ORDERING AND SCHEDULING FOR SSys

Ordering: (Pinl: SSyl), (Pin3: SSy2), (Pin4: SSy3),
(Pin5: SSy 4), (Pin2,Gnd: SSy 5)
o Basic schedule SSy1, SSy2, SSy4, SSy5, SSy3
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MIXED WR-PARALLEL MATRIX SOLVER

o Large dependence on number of available
DroCcessors

o Large dependence on system size (Number of
SSy)

o Convergence in 3 to 10 iterations

o Conventional solution: At most 1 processor per
SSy

o New solution: Assign matrix solver
o« Number of processors depends on size of SSy

o SSy compute time Is more uniform
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VALIDATION PROBLEMS FOR WR
SOLUTION

The first contact is driven by a pulse voltage source with tige
T, = 50 ps.

L eft: transient voltage; Right: magnitude spectrum.
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PARALLEL MATRIX SOLUTION OF SSy

o Size of each SSy is different for real problems
o Several processors to solve SSy circuits

Relative compute time

Pin
—— Pin and gnd| |

No. processors

Parallel compute time for 1 pin and

July, 2010
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A CONNECTOR TEST PROBLEM

> 1b | A
—+—A2b : 0.8
L3b : 12
L4b :
1.5 | [Sb ] |
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WAVEFORM COMPARISON WITH WR

0.6 ,
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Input and output WF flat and WR comparison
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CON

NECTOR MODELING RESULTS

Inductive cells

Capacitive cells

Nodes

552

152

200

Table 1: Global problem.

Inductive cells

Capacitive cells

Nodes

264

304

30

Table 2: Grounded pin+ground plane.

Global [s] | Grounded pin+ground plane |

5]Ratio

119.4

21.35

Table 3. CPU-time requirements.

9.9
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LARGE EM SYSTEM BEHAVIOR FOR
WR

o Original circuit matrix size: NxN

o Number of subsystems SSy S

o« Number of processors: P

e Number of WR iterations: K

o Circuit solver run time assumed: O(N?)
e S=P=3; K=3;

Times = N2 (2)

| KN?
T|mQNR:?:N2 (3)
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SUMMARY AND CONCLUSIONS

WR for circuits
 Introduction of issues for circuit WR
o Status: Ongoing work on improving partitioning

PEEC solver status
o Work In starting phase, several problems solved

General Status
o Many papers have been published, parallel WR

o Continuous progress on new algorithms and
Implementations

o« Commercial interest Is Iin large parallel solvers
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