

Carlo Carobbi

Dipartimento di Elettronica e Telecomunicazioni Università degli Studi di Firenze

Non - reproducibility of radiated emission tests

- Presentation mainly focused on this topic
- The contribution due to test site imperfections will be analyzed
- Important subject per se
- All the typical ingredients of EMC measurement uncertainty evaluation are involved

Sources of non – reproducibility of radiated emission tests

- Imperfections of:
 - Test sites
 - Antennas
 - Receivers
 - Connections
 - Set-up (geometry)
- EUT (intrinsic instability, layout of cables and auxiliary equipment)

Isolating the contribution due to test site imperfections

- Collaborative exercise performed: radiated emission measurement repeated in several different test sites
- Same instrumentation involved in each site (field source, receiving antenna, spectrum analyzer, cables)
- Same geometry, same measurement procedure (pre-defined measurement protocol), same personnel

Test sites involved

- Compact size fully anechoic rooms
- 14 nominally equivalent sites investigated
 - 30 300 MHz frequency range
 - Vertical polarization
 - Received power (dBm) is the measured quantity

Resolving power of the method

- Ability to discriminate a site from another
- Limited by measurement non repeatability

Achieving repeatability

- Stable field source, battery operated
- Care of positioning (distance and mutual alignment)
- Well balanced receiving antenna
- Weak coupling with and reflections from the length of cable inside the room
- High signal to noise ratio and numerical averaging
- Spectrum analyzer warm-up and self calibration
- Automatic measurement

Repeatability quantified

Spectrum Analyzer noise	± 0.2 dB (± 0.02 dB)
Spectrum Analyzer amplitude resolution and repeatability	± 0.1 dB
Generator instability (intrinsic + thermal fluctuations)	± 0.05 dB
Positioning uncertainty	± 0.02 dB
Inversion test	± 0.14 dB
Total	± 0.27 dB (± 0.18 dB)

Repeatability better than 0.3 dB or 0.2 dB (1 std. dev.), depending on the signal to noise ratio

Results: dispersion among sites Standard deviation 14 sites d B Repeatability f (MHz)

Results: mean received power vs. prediction in ideal empty space

Results: source + spectrum analyzer observed instability

- Observed
 0.16 dB std. dev.
- Predicted0.11 dB std. dev.

Politecnico di Milano - 20 Feb. 2009

Questions

- Sites investigated "equivalent"?
- Deviation dominated by a minority of bad performing sites?
- Correlation with sites' physical structure possible?
- Site correction factor?

Deviations from the mean

Politecnico di Milano - 20 Feb. 2009

Sites' structural characteristics

	Site #	Volume	(m^3)	Absorbing lining
	1	63		Ferrite
	2	93	s	Ferrite + Pyramid 45/60 cm
	3	101	m	Ferrite + Pyramid 50 cm
	4	105	a	Pyramid 60 cm
	5	112		Ferrite + Pyramid 32/50 cm
	6	134		Pyramid 30/55/65 cm
	7	150)	Ferrite + Pyramid
	8	m ₂₁₆	;	Ferrite + Pyramid 10/30/50 cm
	9	e 321		Ferrite + Pyramid 45 cm
	10	i 323	5	Ferrite
	11	u ³²⁴		Ferrite + Pyramid 50 cm
	12	m ³⁷¹		Ferrite + Pyramid 50/200 cm
>	13	743	;	Pyramid 60 cm
F	14	115	2	Pyramid 60 cm

I

а

r

g e

Deviations from the mean (removed small sites without ferrite)

Politecnico di Milano - 20 Feb. 2009

Rejecting outliers

# outliers	site #
6	5
4	14
3	10
2	13
2	1
2	7
1	8
1	2
1	12
1	11

- Chauvenet's rejection criterion applied at each frequency
- 23 outliers distributed over 10 sites
 - Site #5 worst performing: 6 outliers
- Decision to reject 3 measured values: 2 (site 5) + 1 (site 10)
- We are not rejecting blunders (risk missing information)

Dispersion: 2 sites removed and 3 outliers rejected

Mean: 2 sites removed and 3 outliers rejected

Politecnico di Milano - 20 Feb. 2009

What we conclude

- Need of inter-laboratory comparisons (both collaborative exercises and proficiency tests)
 - Reproducibility quantified
 - Get physical insight
 - Uncertainty evaluation applied
 - Lab personnel involved in non-standard experiments
 - Not expensive practice
 - If well designed can cover any type of EMC test (RE, RS, CE, CS)

A note on uncertainty calculations in EMC

- Quite large deviations
- Extensive use of dB units
 - A problem when mixing natural and logarithmic quantities
- Specific asymmetric probability density functions involved
 - Log-normal
 - Rice (weak signal plus receiver noise, strong multipath interference)
- All these analytical aspects dealt with in GUM supplement 1

Thank you for your kind attention

Politecnico di Milano - 20 Feb. 2009