"FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION"

Ing.Alessandro Fanti

Electromagnetic Group
Department of Electrical and Electronic Engineering University of Cagliari
Piazza d'Armi, 09123 Cagliari, Italy

- Introduction

- Finite Difference approach to the mode evaluation for an elliptic waveguide. The use of 2D elliptical grid allows to take exactly into account the elliptical boundary. As a consequence, we get an high accuracy, with a reduced computational burden, since the resulting matrix is highly sparse;
- Standard Finite difference computation of waveguide modes requires two different grids, one for TE and another for TM modes, because the boundary conditions are different. We propose and assess here use of a single grid.

- A finite-difference technique to compute Eigenvalues and mode distribution of non standard waveguide (and aperture) is presented. It is based on a mixed mesh (cartesian-polar) to avoid discretization of curved edges, and is able to give an accuracy comparable to FEM techniques with a reduced computational burden.
- A new general scheme for the FD approximation of the Laplace operator, based on a non-regular discretization, is discussed here. It allows to take into account in the FD scheme the boundary conditions, and therefore allows to use the exact shape of the boundary. As a consequence, the field distribution details can be more accurately modeled.

An accurate knowledge of the cut-off frequency and field distribution of waveguide modes is important in many waveguide problems.
The same type of information is necessary in the analysis with the method of moments (MOM) of thick-walled apertures. Indeed, these apertures can be considered as waveguide, and the modes of these guides are the natural basis functions for the problem.
Apart from some simple geometries, mode computation cannot be done in closed forms, so that suitable numerical techniques must be used. A popular technique for cut-off frequency and field distribution evaluation is Finite Difference (FD), i.e, direct discretization of the eigenvalue problem. This allows a simple and very affective evaluation, also because the problem is reduced to the computation of the eigenvalues and eigenvectors of an highly sparse matrix \qquad

The standard four-point FD approximation of the Laplace operator, however, cannot be used for more complex geometry since it require a regular (rectangular) discretization grid, and therefore a boundary with all sides parallel to the rectangular axes. Therefore circular and elliptic boundaries are typically replaced by stair case approximation.
Aim of this presentation is to develop, and assess, a general scheme for the FD approximation of the Laplace operator, based on a regular polar and elliptic grid.

OF THE TECNIQUE

Standard FD discretization in Cartesian coordinates for a rectangular cell :

leads to the approximation of the Laplace oparator

$$
\nabla_{1}^{2} \varphi_{0}=\frac{1}{\Delta x^{2} \cdot \Delta y^{2}} \cdot\left[\Delta y^{2} \cdot \varphi_{1}+\Delta x^{2} \cdot \varphi_{4}+\Delta y^{2} \cdot \varphi_{3}+\Delta x^{2} \cdot \varphi_{2}-2 \cdot\left(\Delta x^{2}+\Delta y^{2}\right) \cdot \varphi_{0}\right]
$$

OF THE TECNIQUE RAMEWORK

- Let use consider a circular waveguide. Both TE and TM modes can be found from a suitable scalar eigenfunction ϕ, solution of the Helmothz equation:
with the boundary condition

The approximation of the laplacian becomes:
$\left.\nabla \varphi_{t}^{2}\right)_{P}=\frac{1}{r_{p}^{2}(\Delta \alpha)^{2}} \cdot \varphi_{A}+\left(\frac{1}{2 r_{p} \Delta r}+\frac{1}{(\Delta r)^{2}}\right) \cdot \varphi_{B}+\frac{1}{r_{p}^{2}(\Delta \alpha)^{2}} \cdot \varphi_{C}+\left(\frac{1}{(\Delta r)^{2}}-\frac{1}{2 r_{p} \Delta r}\right) \cdot \varphi_{D}-\left(\frac{2}{(\Delta r)^{2}}+\frac{2}{r_{p}^{2}(\Delta \alpha)^{2}}\right) \cdot \varphi_{P}$

For the center point we integrate (1) over a discretization cell $\int \nabla^{2} \varphi d S=-k^{2} \int \varphi d S$

Use of Gauss Theorem gives:

$$
\int_{\Gamma_{F}} \nabla_{t}^{2} \varphi \cdot i_{n} d l=-k_{t}^{2} \int_{S_{F}} \varphi d S
$$

i.e $\int_{\Gamma_{k}} \frac{\partial \varphi}{\partial n} \cdot d t=-k{ }^{2} \varphi$
(3) where Γ_{F} is the cell boundary,
$S_{F} \quad$ is the cell surface and φ is evaluated at the discretization node.
$\sum_{q=1}^{N} \frac{\left(\varphi_{q}-\varphi_{P}\right)}{\Delta r} \cdot \frac{\Delta r}{2} \cdot \Delta \alpha$
(4)

COMPARISON BETWEEN OUR/FD CODE AND ANALITIC RESULTS FOR TE MODES IN CIRCULAR GUIDE WAVE

k_{1} (Analitic)	$k_{\text {(FIT) }}$	k_{k} (Our FD code)	Relative error
0.4602	0.4604	0.4604	0.034%
0.7635	0.7633	0.7634	0.012%
0.9580	0.9572	0.9578	0.014%
1.0502	1.0493	1.0500	0.016%
1.3292	1.3284	1.3292	0.000%
1.3327	1.3313	1.3313	0.108%

DESCRIPTION OF THE TECNIQUE NGELIPTIC FRAMEWORK

Let use consider a elliptic waveguide. Both TE and TM modes can be found from a suitable scalar eigenfunction φ, solution of (1)

DESCRIPTION OF THE TECNIQUE

Assuming a regular spacing on the coordinate lines, with step $\Delta u, \Delta v$. and letting $\varphi_{p q}=\varphi(p \Delta u, q \Delta v)$ the eigenvalues equation (1) can be expressed us:

$$
\begin{equation*}
\frac{1}{\left.c^{2} \cdot(\sinh)^{2} u+\sin ^{2} \nu\right)} \cdot\left(\frac{\partial^{2} \varphi}{\partial u^{2}}+\frac{\partial^{2} \varphi}{\partial v^{2}}\right)=-k_{t}^{2} \varphi_{p q} \tag{6}
\end{equation*}
$$

the term in brackets expanded exactly as in a rectangular grid:

$$
\left(\frac{\partial^{2} \varphi}{\partial u^{2}}+\frac{\partial^{2} \varphi}{\partial v^{2}}\right)=\left(\frac{\varphi_{A}}{(\Delta v)^{2}}+\frac{\varphi_{B}}{(\Delta u)^{2}}+\frac{\varphi_{C}}{(\Delta v)^{2}}+\frac{\varphi_{D}}{(\Delta u)^{2}}-2 \varphi_{P} \cdot\left(\frac{1}{(\Delta u)^{2}}+\frac{1}{(\Delta v)^{2}}\right)\right)
$$

FOCUS

Finally, consider the foci of the elliptical shape grid

$$
\begin{aligned}
& \int D_{t} \varphi \cdot i_{n} d l=-k_{t}^{2} \cdot \frac{1}{S_{A}} \cdot \int \varphi \cdot d s \cong-k_{t}^{2} \cdot \varphi_{A} \\
& {\left[\left(\varphi_{C}-\varphi_{P}\right) \cdot L_{E}+\left(\varphi_{A}-\varphi_{P}\right) \cdot L_{I}\right]}
\end{aligned}
$$

$S A$ is the area of the cell, and L_{E}, L_{I} are half the length of the arc of the ellipse and of the arc of the hyperbola respectively.

$$
\begin{aligned}
& h_{u}(u, v)=h_{v}(u, v)=\frac{1}{a \sqrt{\sinh ^{2} u+\sin ^{2} v}} \\
& =\int_{0}^{\frac{\Delta v}{2}} h_{u}\left(\frac{\Delta u}{2}, v\right) d v \cong \frac{\Delta v}{4}\left(h_{u}\left(\frac{\Delta u}{2}, 0\right)+h_{u}\left(\frac{\Delta u}{2}, \frac{\Delta v}{2}\right)\right)
\end{aligned}
$$

$$
L_{i}=\int_{0}^{2} h_{v}\left(u, \frac{\Delta v}{2}\right) d u \cong \frac{\Delta u}{4}\left(h_{\nu}\left(\frac{\Delta v}{2}, 0\right)+h_{v}\left(\frac{\Delta u}{2}, \frac{\Delta v}{2}\right)\right.
$$

AI AUUMERICAL RESULT

COMPARISON BETWEEN OUR FD CODE AND A COMMERCIAL FIT CODE FOR TE MODE IN ELLIPTIC WAVEGUIDE.

k_{1} (FIT)	$k_{\text {((Our FD code) }}$	Relative error
0.2168	0.2166	0.092%
0.3963	0.3960	0.075%
0.4395	0.4389	0.136%
0.5666	0.5662	0.070%
0.5720	0.5716	0.069%
0.7036	0.7033	0.042%
0.7454	0.7451	0.040%

TM MODES

Since the fundamental mode is a TE, these modes are the most interesting. TM modes can, however, be computed in a likely way, taking into account the different boundary conditions.
This was done using a grid different from TE one. This might be fine for the calculation of modes of microwave guiding structures, but for some applications (analysis by the method of moments of aperture, Mode matching) would be much more useful the TE grid. Then we explored the possibility of using a single grid for both TE and TM modes.

For TM modes:

$$
\begin{aligned}
& \frac{1}{r_{p}^{2}(\Delta \alpha)^{2}} \cdot \varphi_{A}+\left(\frac{1}{3 r_{p} \Delta r}+\frac{4}{3(\Delta r)^{2}}\right) \cdot \varphi_{B}+ \\
& \left.\varphi_{C}-\frac{4}{(\Delta r)^{2}}-\frac{1}{r_{p} \Delta r}+\frac{2}{r_{p}^{2}(\Delta \alpha)^{2}}\right) \cdot \varphi_{P}
\end{aligned}
$$

COMPARISON BETWEEN OURFD CODE AND AND ANALITIC RESULTS FOR TM MODES IN CIRCULAR WAVE GUIDE

$k_{\text {, (Analitic) }}$	$k_{,}$(Our FD code)	Relative error
0.6013	0.6012	0.003%
0.9580	0.9579	0.005%
1.2840	1.2839	0.008%
1.3800	1.3798	0.018%
1.5950	1.5949	0.003%
1.7540	1.7535	0.029%

DESCRIPTION OF THE

-For the all point we integrate (1) over a discretization cell

$$
\int \nabla^{2} \varphi \cdot d s=-k^{2} \int \varphi d^{\varphi}
$$

Use of Gauss Theorem gives: $\int_{F} \nabla^{2} \varphi \cdot i_{n} d l=-k_{T}^{2} \int_{S_{F}} \varphi d S$

$$
\text { i.e } \int_{\Gamma} \frac{\partial \varphi}{\partial n} d t=-k_{i}^{2} \varphi \text { (3) where } \varphi \text { is evaluated at the discretization node. }
$$

S_{F} is the cell surface and

Standard FD discretization in Cartesian coordinates for a rectangular cell :
leads to the approximation of the Laplace oparator

$$
\nabla_{1}^{2} \varphi_{0}=\frac{1}{\Delta x^{2} \cdot \Delta y^{2}} \cdot\left[\Delta y^{2} \cdot \varphi_{1}+\Delta x^{2} \cdot \varphi_{4}+\Delta y^{2} \cdot \varphi_{3}+\Delta x^{2} \cdot \varphi_{2}-2 \cdot\left(\Delta x^{2}+\Delta y^{2}\right) \cdot \varphi_{0}\right]
$$

Our interest is to use irregular grids

A consider a non standard discretization

Using a second order Taylor approximation we get:
$\varphi_{i}-\varphi_{0}=\left.\frac{\partial \varphi}{\partial x}\right|_{0} \cdot \Delta x_{i}+\frac{\partial \varphi}{\partial y} l_{0} \cdot \Delta y_{i}+\left.\frac{1}{2} \frac{\partial^{2} \varphi}{\partial x^{2}}\right|_{0} \cdot \Delta x_{i}{ }^{2}+\left.\frac{1}{2} \frac{\partial^{2} \varphi}{\partial y^{2}}\right|_{0} \cdot \Delta y_{i}{ }^{2}+\left.\frac{\partial^{2} \varphi}{\partial x \partial y}\right|_{0} \cdot \Delta x_{i} \cdot \Delta y_{i}$
where all derivatives of ϕ are computed at the sampling point, and ($\Delta \mathrm{x}_{\mathrm{i}}, \Delta \mathrm{y}_{\mathrm{i}}$) the position of the i -th point w.r.t point 0 .

Therefore $\sum_{i} A_{i}\left(\varphi_{i}-\varphi_{0}\right)=B_{i} \frac{\partial \varphi}{\partial x}+B_{2} \frac{\partial \varphi}{\partial y}+B_{3} \frac{\partial^{2} \varphi}{\partial x^{2}}+B_{4} \frac{\partial^{2} \varphi}{\partial y^{2}}+B_{5} \frac{\partial^{2} \varphi}{\partial x \partial y}$

The B_{i} are linear combination of the unknown coefficients A_{i}.
For example B_{1} is equal to:

$$
B_{1}=A_{1} \Delta x_{1}+A_{2} \Delta x_{2}+A_{3} \Delta x_{3}+A_{4} \Delta x_{4}+A_{5} \Delta x_{5}
$$

To get the Laplace operator we required
$B_{1}=B_{2}=B_{5}=0 \quad B_{3}=B_{4}=1$
which is a linear system in the A_{i}.

To assess our FD technique with variable grid, we have analyzed a ridged waveguide with trapezoidal ridges and rectangular aperture.

TE mode	1.55 mm	$2.05 \mathrm{~mm}$	2.55 mm	3.05 mm	3.55 mm	4.05 mm	4.55 mm
I	0.1774	0.1991	0.2180	0.2347	0.2496	0.2625	0.2733
II	0.6220	0.6065	. 5	0.5889	0.5829	0.5772	0.5710
III	0.6324	0.6388	0.64	0.64	0.6503	0.6463	0.6367
IV	0.6325	0.6393	0.6	0.6555	0.6638	0.6715	0.6780
	TE Mode of ridge waveguide trapezoidal aperture and rectangular aperture, increases "e"						
I	0.1849	0.2044	0.2214	0.2366	0.2505	0.2629	0.2737
II	0.5954	0.5881	0.5850	0.5830	0.5805	0.5765	0.5708
III	0.6771	0.6731	0.6697	0.6660	0.6603	0.6512	0.6382
IV	0.6771	0.6733	0.6711	0.6706	0.6718	0.6748	0.6789

AIHCONCLUSION

A new FD approach to the computation of the modes of circular and elliptic waveguide has been described. Using an elliptical cylindrical grid, it takes exactly into account the curved boundary. Both TE and TM can be computed either on different grids or on the same grid.
The typical sparse matrix obtained by the FD allows an effective computation of the eigenvalues, with a very good accuracy, as shown by our tests.
A further significant improvement in in the computational speed can be obtained using parallel architeture.

An irregular grid FD approach in the variable grid to the computation of the all modes of the waveguide has been described. The typical sparse matrix obtained by the FD allows an effective computation of the eigenvalues, with a very good accuracy, as shown by our tests visible on acts.
A for there significant improvement in in the computational speed can be obtained using parallel architeture.

