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� Introduction
� Finite Difference approach to the mode evaluation for an elliptic

waveguide. The use of 2D elliptical grid allows to take exactly into
account the elliptical boundary. As a consequence, we get an high
accuracy,with a reduced computational burden, since the resulting
matrix is highly sparse;

� Standard Finite difference computation of waveguide modes requires
two different grids, one for TE and another for TM modes, because the
boundary conditions are different. We propose and assess here use of
a single grid.
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� A finite-difference technique to compute Eigenvalues and mode 
distribution of non standard waveguide (and aperture) is presented. It 
is based on a mixed mesh (cartesian-polar) to avoid discretization of 
curved edges, and is able to give an accuracy comparable to FEM 
techniques with a reduced computational burden.

� A new  general scheme for the FD approximation of the Laplace 
operator, based on a non-regular discretization, is discussed here. It 
allows to take into account in the FD scheme the boundary conditions, 
and therefore allows to use  the exact shape of the boundary. As a 
consequence, the field distribution details can be more accurately 
modeled.

SUMMARYSUMMARY



An accurate knowledge of the cut-off frequency and field distribution of waveguide 
modes is important in many waveguide problems.
The same type of information is necessary in the analysis with the method of 
moments (MOM) of thick-walled apertures. Indeed, these apertures can be 
considered as waveguide, and the modes of these guides are the natural basis 
functions for the problem.
Apart from some simple geometries, mode computation cannot be done in closed 
forms, so that suitable numerical techniques must be used. A popular technique for 
cut-off frequency and field distribution evaluation is Finite Difference (FD),  .i.e, 
direct discretization of the eigenvalue problem. This allows a simple and very 
affective evaluation, also because the problem is reduced to the computation of the 
eigenvalues and eigenvectors of an highly sparse matrix
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The standard four-point FD approximation of the Laplace operator, however, 
cannot be used for more complex geometry since it require a regular (rectangular) 
discretization grid, and therefore a boundary with all sides parallel to the 
rectangular axes. Therefore circular and elliptic boundaries are typically replaced 
by stair case approximation.
Aim of this presentation is to develop, and assess, a general  scheme for the FD 
approximation of the Laplace operator, based on a regular polar and elliptic grid.
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DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE

1

2

3

4

0

Standard FD discretization in Cartesian coordinates for a rectangular cell :

leads to the approximation of the Laplace oparator

( )[ ]0
22

2
2

3
2

4
2

1
2

220
2 2

1 ϕϕϕϕϕϕ ⋅∆+∆⋅−⋅∆+⋅∆+⋅∆+⋅∆⋅
∆⋅∆

=∇ yxxyxy
yx

t



ϕϕ 22
tt k−=∇

• Let use consider a circular waveguide. Both TE and TM modes can be found
from a suitable scalar eigenfunction φ , solution of the Helmothz equation:

0=ϕ0=
∂
∂

n

ϕwith the boundary condition                      for TE mode,                for TM mode

DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
POLAR FRAMEWORKPOLAR FRAMEWORK

(1)



• Consider the cell around point P enclosed 
points ACBD. Remember the form of the 
Laplacian in polar coordinates:
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Using a second order Taylor approximation for points A and C, and summing:
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DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
POLAR FRAMEWORKPOLAR FRAMEWORK

(2)



• using the same procedure for points B and D 
we get:

The approximation of the laplacian becomes:
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DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
POLAR FRAMEWORKPOLAR FRAMEWORK
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CENTER POINTCENTER POINT
For the center point  we integrate (1) over a discretization cell

∫∫ −=∇ dSkdS tt ϕϕ 22

Use of Gauss Theorem gives: ∫∫ −=⋅∇
Γ FF S

tnt dSkdli ϕϕ 22

i.e ∫Γ
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∂
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F
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n
ϕϕ 2 (3)   where FΓ is the cell boundary, 

FS is the cell surface and ϕ is evaluated at the discretization node.
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• For TE mode               

BOUNDARY POINTBOUNDARY POINT
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NUMERICAL RESULTNUMERICAL RESULT

COMPARISON BETWEEN OUR FD CODE AND ANALITIC RESULTS 
FOR TE MODES IN CIRCULAR GUIDE WAVE 

(Analitic)tk (FIT)tk Relative error

0.4602 0.4604 0.4604 0.034%
0.7635 0.7633 0.7634 0.012%
0.9580 0.9572 0.9578 0.014%
1.0502 1.0493 1.0500 0.016%
1.3292 1.3284 1.3292 0.000%
1.3327 1.3313 1.3313 0.108%

code) FD(Our tk



DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
ELLIPTIC FRAMEWORKELLIPTIC FRAMEWORK

Let use consider a elliptic waveguide. Both TE and TM modes can be found 
from a suitable scalar eigenfunction      , solution of (1)ϕ



the term in brackets expanded exactly as in a rectangular grid:

DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
ELLIPTIC FRAMEWORKELLIPTIC FRAMEWORK

Assuming a regular spacing on the coordinate lines, with step
and letting the eigenvalues

equation (1) can be expressed us:

(6)
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is the area of the cell, and                   are half 
the length of the arc of the ellipse and of the arc
of the hyperbola respectively. 

Finally, consider the foci of the elliptical shape grid
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NUMERICAL RESULTNUMERICAL RESULT

COMPARISON BETWEEN OUR FD CODE AND A COMMERCIAL FIT CODE
FOR TE MODE IN ELLIPTIC WAVEGUIDE.

(FIT)tk code) FD(Our tk Relative error
0.2168 0.2166 0.092 %
0.3963 0.3960 0.075 %
0.4395 0.4389 0.136 %
0.5666 0.5662 0.070 %
0.5720 0.5716 0.069 %
0.7036 0.7033 0.042 %
0.7454 0.7451 0.040 %



TM MODESTM MODES
Since the fundamental  mode is a TE, these modes are the most interesting. TM 

modes can, however, be computed in a likely way, taking into account the different 
boundary conditions.
This was done using a grid different from TE one. This might be fine for the 
calculation of modes of microwave guiding structures, but for some applications 
(analysis by the method of moments of aperture,  Mode matching) would be much 
more useful the TE grid. Then we explored the possibility of using a single grid for 
both TE and TM modes.



BOUNDARY POINT BOUNDARY POINT 

P
A C

B

( ) ( )2
2

2

|
2

1
| r

r
r

r PPPB ∆−⋅
∂
∂+∆−⋅

∂
∂+= ϕϕϕϕ

Using a second order Taylor approximation for Q: 
2

2

2

2
|

2

1

2
|0 







 ∆⋅
∂
∂+







 ∆⋅
∂
∂+== r

r

r

r PPPQ
ϕϕϕϕ

Q
0=QϕBoundary condition: 

Recalling that:

We can compute: Pr
|

∂
∂ϕ

Pr
|

2

2

∂
∂ ϕ
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• For TM modes:

BOUNDARY POINT BOUNDARY POINT 
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NUMERICAL RESULTNUMERICAL RESULT

COMPARISON BETWEEN OUR FD CODE AND AND ANALITIC RESULTS FOR TM
MODES IN CIRCULAR WAVE GUIDE

(Analitic)tk code) FD(Our tk Relative error
0.6013 0.6012 0.003%
0.9580 0.9579 0.005%
1.2840 1.2839 0.008%
1.3800 1.3798 0.018%
1.5950 1.5949 0.003%
1.7540 1.7535 0.029%



• For the  all  point  we integrate (1) over a discretization cell

DESCRIPTION OF THE DESCRIPTION OF THE 
TECNIQUETECNIQUE

Use of Gauss Theorem gives: ∫∫ −=⋅∇
Γ FF S

tnt dSkdli ϕϕ 22

i.e ∫Γ
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F
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ϕϕ 2 (3)   where 

FS is the cell surface and

ϕ is evaluated at the discretization node.
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The approximation of the laplacian becomes:
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The approximation of the laplacian becomes:
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NUMERICAL RESULTNUMERICAL RESULT

B

R

R = 2mm,B = 6.137mm

D=51p,X=51p,a=1D=51p,X=51p,a=1°°,r=2,r=2

ktpktp kthkth ktcstktcst ephfs%ephfs% epcst%epcst%

0.21780.2178 0.21820.2182 0.21820.2182 0.15150.1515 0.15000.1500

0.41550.4155 0.41540.4154 0.41520.4152 0.02680.0268 0.06180.0618

0.42890.4289 0.42550.4255 0.42530.4253 0.79590.7959 0.84380.8438

0.50560.5056 0.50380.5038 0.50370.5037 0.35070.3507 0.37280.3728

0.61240.6124 0.61530.6153 0.61430.6143 0.45740.4574 0.29810.2981

0.65610.6561 0.65210.6521 0.65160.6516 0.60930.6093 0.68050.6805

0.77850.7785 0.77480.7748 0.77380.7738 0.48250.4825 0.60840.6084

0.82440.8244 0.81890.8189 0.81710.8171 0.66950.6695 0.88920.8892

0.83180.8318 0.82650.8265 0.82550.8255 0.64070.6407 0.76220.7622

0.87710.8771 0.87220.8722 0.87110.8711 0.55410.5541 0.68270.6827
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NUMERICAL RESULTNUMERICAL RESULT

D

B

h

D = 4 mm,B = 6.137mm, h=2.6

MODIMODI Kt (HFSS)Kt (HFSS) Kt (num)Kt (num)

Modo fond TEModo fond TE 0.24488150.2448815 0.24321150.2432115

1 modo sup 1 modo sup TETE 0.35771060.3577106 0.35609060.3560906

2 modo 2 modo sup TEsup TE 0.39490760.3949076 0.39332760.3933276

3 modo 3 modo supsup TETE 0.54600410.5460041 0.54438410.5443841

4 modo sup  TE4 modo sup  TE 0.585.29940.585.2994 0.58371940.5837194
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DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
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Standard FD discretization in Cartesian coordinates for a rectangular cell :

leads to the approximation of the Laplace oparator

Our interest is to use irregular grids



DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE
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and  (∆xi, ∆yi) the position of the i–th point w.r.t point 0.



Therefore (1)

The Bi are linear combination of the unknown coefficients  Ai.

DESCRIPTION OF THE TECNIQUEDESCRIPTION OF THE TECNIQUE

To get the Laplace operator we required 

B1=B2=B5=0       B3=B4=1            (2)           which is a linear system in the Ai.   

For example B1 is equal to:
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For a boundary point, boundary condition δφ/δn=0 can be expressed as:

(3)

BOUNDARY POINTBOUNDARY POINT
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where  α1,α2 are the component of a vector normal to the boundary.

System (2) for a boundary point is modified tuning in to account    

boundary condition (3). 



EXAMPLE OF BOUNDARY CONDITIONEXAMPLE OF BOUNDARY CONDITION
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To assess our FD technique with variable grid, we have analyzed a 
ridged waveguide with trapezoidal ridges and rectangular aperture.

NUMERICAL RESULTNUMERICAL RESULT

e d

a b c

e d

a b c



NUMERICAL RESULTNUMERICAL RESULT

TE mode Kt (FD) Kt (CST )

I 0.1774 0.1776

II 0.6220 0.6222

III 0.6324 0.6325

IV 0.6325 0.6326

TE Mode of ridge waveguide trapezoidal 
aperture  with  e=1.55 mm



NUMERICAL RESULTNUMERICAL RESULT

TE mode Kt (FD) Kt (CST )

I 0.2214 0.2216

II 0.5850 0.5854

III 0.6697 0.6699

IV 0.6711 0.6714

TE Mode of ridge waveguide rectangular 
aperture  with  e=2.55 mm



NUMERICAL RESULTNUMERICAL RESULT

TE mode

1.55 mm 2.05 mm 2.55 mm 3.05 mm 3.55 mm 4.05 mm 4.55 mm

I 0.1774 0.1991 0.2180 0.2347 0.2496 0.2625 0.2733

II 0.6220 0.6065 0.5963 0.5889 0.5829 0.5772 0.5710

III 0.6324 0.6388 0.6450 0.6493 0.6503 0.6463 0.6367

IV 0.6325 0.6393 0.6472 0.6555 0.6638 0.6715 0.6780

TE Mode of ridge waveguide trapezoidal aperture and rectangular aperture, increases “e”

I 0.1849 0.2044 0.2214 0.2366 0.2505 0.2629 0.2737

II 0.5954 0.5881 0.5850 0.5830 0.5805 0.5765 0.5708

III 0.6771 0.6731 0.6697 0.6660 0.6603 0.6512 0.6382

IV 0.6771 0.6733 0.6711 0.6706 0.6718 0.6748 0.6789



NUMERICAL RESULTNUMERICAL RESULT

FD is able to compute in the maximum field in the waveguide.

Compared  the maximum value of the filed ridged waveguide with trapezoidal ridges and 
rectangular ridges.

One problem of the ridge waveguide is the reduced power capability. 



CONCLUSIONCONCLUSION
A new FD approach to the computation of the modes of circular and elliptic 
waveguide has been described. Using an elliptical cylindrical grid, it takes 
exactly into account the curved boundary. Both TE and TM can be computed 
either on different grids  or on the same grid.
The typical sparse matrix obtained by the FD allows an effective computation of 
the eigenvalues, with a very good accuracy, as shown by our tests.
A further significant improvement in in the computational speed can be obtained 
using parallel architeture.

An irregular grid  FD approach in the variable grid to the computation of the all 
modes of the waveguide has been described. The typical sparse matrix obtained 
by the FD allows an effective computation of the eigenvalues, with a very good 
accuracy, as shown by our tests visible on acts. 
A for there significant improvement in in the computational speed can be 
obtained using parallel architeture.
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