Map of China

Mulitphysics Solution for Nanoelectronics

Wen-Yan Yin

Center for Optical and EM Research(COER) Zhejiang University, Hangzhou, China E-mail: <u>wyyin@zju.edu.cn</u> and wyyin@sjtu.edu.cn <u>http://coer.zju.edu.cn</u> and http://cmrft.sjtu.edu.cn

Silicon-based Transmission Lines

Electrothermal Effects

Finite electrical conductivity and semiconducting substrate!

4

Problems

- (1) Temperature effects on electrical conductivities of most metal materials?
- (2) Temperature effects on thermal conductivities of most semiconducting materials?

Silicon-based Millimeter Wave TLs

K. Kang, L. Nan, S. C. Rustagi, W. Y. Yin, et al, "A wideband scalable and SPICE-compatible model for on-chip interconnects up to 110 GHz," IEEE Trans. Microwave Theory Tech., 56(4), 942-951, 2008.

Silicon-based Millimeter Wave TLs

ITRS

Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM ½ Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 1/2 Pitch (nm)(contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	6	6
Number of metal levels	13	13	13	14	14	14	14
Number of optional levels – ground planes/capacitors	4	4	4	4	4	4	4
Total interconnect length (m/cm^2) – Metal 1 and five intermediate levels, active wiring only [1]	3571	4000	4545	5000	5555	6250	7143
FITs/m length/cm ² × 10^{-3} excluding global levels [2]	1.4	1.3	1.1	1	0.9	0.8	0.7
J _{max} (A/cm ²) – intermediate wire (at 105°C)	1.06E+07	1.14E+07	1.47E+07	1.54E+07	1.80E+07	2.23E+07	2.74E+07
Metal 1 wiring pitch (nm)	56	50	44	40	36	32	28
Conductor effective resistivity ($\mu\Omega$ -cm) Cu intermediate wiring including effect of width- dependent scattering and a conformal barrier of thickness specified below	5.2	5.58	6.01	6.33	6.7	7.34	8.19

After 2014: J_{max} > 1.06 x 10⁷ A/cm2

Final Solutions are not Known

Y. Awano, et al., PIEEE, 98(12), 2015-2031, 2010.

Size Effect in Cu Interconnect

CNT and GRAPHENE Solutions?

Carbon Nanotube Transmission Lines (CNTL): Beyond Maxwell's Equations

SWCNT

GR

MWCNT

Courtesy: F. Kreupl, Infineon

CNT Classification

MWCNT (each wall can be S or M, most walls are M) About 1/3 of all SWCNTs are metallic and 2/3 are semiconducting

Metallic SWCNT Properties

- Length: um-mm
- Diameter: 0.4-100nm
- Strength : 45 Tpa! (Steel ~ 2Tpa)
- Thermal stability: operating temperature up to 700 ° C.

	CNT	Cu
Maximum current carrying	> 1X10 ⁹	<1X10 ⁷
density(A/cm*cm)	Radosavljevic, et al., <i>Phys.</i> <i>Rev. B</i> , 2001	
Thermal conductivity (W/mK)	5800	385
	Hone, et al., <i>Phys. Rev. B</i> , 1999	
Mean free path (diameter=1nm)	>1000	40
	McEuen, et al., <i>IEEE Trans.</i> Nano., 2002	

T. Wang, et al., IEEE Electronic Devices Lett., 33(3), 420-422, Mar.2012

Carbon Nanotubes for Active Nano Devices

Semiconducting SWCNT Properties

Comparison of CNT properties with other semiconductors.

	Bandgap (eV)	Electron Mobility	Saturated Electron	Thermal Conductivity
		(cm ⁻ /vs)	(107cm/s)	(vv/cm-K)
CNT	~0.9	100,000	>10	>30
InAs	0.36	33,000	0.04	0.27
Si	1.1	1,500	0.3	1.5
GaAs	1.42	8,500	0.4	0.5
InP	1.35	5,400	0.5	0.7
4HSiC	3.26	700	2.0	4.5
GaN	3.49	900	3.3	20

CNTFETs

GFETs

CNT Fabrication

²¹ K. Ryu, and H.S.P. Wong, *et al.*, *Nano Lett.*, 9(1), 189-197, 2009.

Graphene Fabrication

Han Wang, et al, "Graphene electronics for RF Applications," IEEE Microwave Magazine, June 2012.

Electromagnetic Capability-Oriented Study on CNTLs

Multiphysics Issues:

Beyond Maxwell's Equations: Quantum Effects

Both Frequency- and Temperature-Dependent

Distributed Parameters of a SWCNT

Kinetic Inductance

$$L_{k-CNT} = \frac{h}{2v_F e^2}$$

 $L_{K} \approx 16 \, n \, H \, / \, \mu m$ $L_{M}^{CNT} = \frac{\mu}{2\pi} \ln\left(\frac{y}{d}\right)$

Quantum Capacitance

$C_{\varrho} = \frac{\Delta Q}{\Delta V} \sim 96 aF / \mu m$ $C_{E} = \frac{2\pi \varepsilon}{\ln(2h/d)}$

SWCNT Bundle

Equivalent circuit model of a SWCNT bundle

DWCNT

$$C_{Q-b} = C_Q \cdot n'_{CNT} \, .$$

$$R_{i-b} = \frac{R_{int}}{n'_{CNT}} = \frac{(R_C + R_{Qi})}{n'_{CNT}} + \frac{R_{Qi}}{n'_{CNT} \ell_{mfpi}} \ell_{CNT} = R_{il-b} + R_{id-b} \ell_{CNT};$$

$$R_{e-b} = \frac{R_{ext}}{n'_{CNT}} = \frac{(R_{C} + R_{Qe})}{n'_{CNT}} + \frac{R_{Qe}}{n'_{CNT} \ell_{mfpe}} \ell_{CNT} = R_{el-b} + R_{ed-b} \ell_{CNT}.$$

DWCNT Bundle

Equivalent circuit model of a DWCNT bundle

S. N. Pu, Wen-Yan Yin, J. F. Mao, *et al.*, "Crosstalk prediction of single and double-walled carbon nanotube(SWCNT/DWCNT) bundle interconnects," *IEEE Trans. Electron Devices*, 56(4), 560-568, 2009

DWCNT Bundle TL

Multi-SWCNT/DWCNT Bundle TL

Tri-SWCNT Bundle TL

Equivalent circuit model of a tri-SWCNT bundle interconnect.

Tri-DWCNT Bundle TL

Equivalent circuit model of a tri-DWCNT bundle interconnect.

MWCNT TL

MWCNT Bundle TL

•H. Li, W. Y. Yin, J. F. Mao, and K. Banerjee, "Circuit modeling and performance analysis of multi-walled carbn nanotube(MWCNT) •interconnects," *IEEE Trans. Electron Devices*, 55(6), 1328-1337, 2008.

Resistivity Comparison

Comparison of resistivity among MWCNTs with various diameters, Cu wires with different dimensions, and SWNCT bundles with different chiralities. Dimension of Cu wires are adopted from ITRS. SWCNT bundles are assumed to be densely packed.

Problems

- (1) How to get the breakdown voltage of a SWCNT?
- (2) How to get the peak power handling capability of a SWCNT?

SWCNT ARRAY

1-D Heat Conducting Equation

$$\begin{cases} \rho(T)c(T) \frac{dT(V, L, t)}{dt} = A \frac{d}{dx} [\kappa(T, L) \frac{d}{dx} T(V, L, t)] + p' - g(T - T_0) \\ T(x = 0) = T_1 \\ T(x = L) = T_2 \end{cases}$$

$$p'(V, T(x), L) = I^2(V, T, L) \frac{dR(V, T(x), L)}{dx} \frac{h}{4q^2} \frac{1}{\lambda_{eff}(V, T(x), L)} \\ R(V, T, L) = R_c + \frac{h}{4q^2} \left[1 + \int_{-L/2}^{L/2} \frac{dx}{\lambda_{eff}(V, T(x), L)} \right]$$
astic electron scattering inelastic electron scattering calculated as the second scattering calculated as the second scattering of the second scattering calculated as the second scattering calc

elastic electron scattering of acoustic phonon

inelastic electron scattering caused by optical phonon emission 2⁻¹

$$\lambda_{eff} (V, T(x), L) = \left(\lambda_{AC}^{-1} + \lambda_{OP, ems}^{-1} + \lambda_{OP, abs}^{-1}\right)$$

 $\lambda_{AC} = \lambda_{AC,300} \left(\frac{300}{T} \right) \quad \begin{array}{l} \text{inelastic electron scattering caused} \\ \text{by optical phonon absorption} \\ \lambda_{T} = \lambda_{AC,300} \left(\frac{300}{T} \right) \quad \begin{array}{l} \lambda_{T} = \lambda_{T} = \lambda_{T} \\ \lambda_{T} = \lambda_{T} = \lambda_{T} \\ \lambda_{T} = \lambda_{T} = \lambda_{T} \\ \lambda_{$

$$\lambda_{OP,ems} = \left(1 / \lambda_{OP,ems}^{fld} + 1 / \lambda_{OP,ems}^{abs} \right)^{-1}$$

 $\kappa(T, L) = [3.7 \times 10^{-7} T + 9.7 \times 10^{-10} T^{2} + 9.3(1 + 0.5/L)T^{-2}]^{-1}$

Specific Heat

Specific heat of a SWCNT as a function of temperature

Temperature Distribution

Longitudinal temperature distribution along single SWCNT in a SWCNT array biased by different voltages, respectively, where the total contact resistance is assumed to be 100Kohm.

Breakdown Voltage

The highest central temperature of the SWCNTs in the array as a function of length biased by different voltage, respectively. Breakdown voltage of the SWNCT local interconnect as a function of its length for different ambient temperatures at the input and output of the array, respectively.

Power Handling Capability

Power handling capacity of the SWNCT local interconnect as a function of its length for different ambient temperatures at the input and output of the array, respectively.

W. C. Chen, W. Y. Yin, *et al.*, "Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays," *IEEE Trans. Nanotechnology*, 8(6), 718-728, 2009.

Electro-thermal Equivalent Circuit Model

Electro-thermal equivalent circuit model of a metallic SWCNT N-array.

Self-heating Effect

Crosstalk noise on the victim line in various biasing conditions with SWCNT length of 5 um.